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. a) We are to verify that in the Schodinger picture we may write the total momentum operator,

P= f/d% m(x)V(x),

in terms of ladder operators as
d®p
— T
P= / (27‘-)3 P apap.

Recall that in the Schrodinger picture, we have the following expansions for the fields ¢ and
7 in terms of the bosonic ladder operators

m(x) = /(g;};g (_i)\/?eipx (ap - aT_p). (1.2)

To begin our derivation, let us compute ﬁd)(x).

Vo(x) = v/d3p L (a eP* 4 al e_ipx)
(2m)3 \2E, * © P ’

d? 1 . .
= / p (ipapelpx — ipaLe*“’x),

(2m)3 /2B,
_ d3p 1 . DX +
‘/ P am, (a0 = L)

Using this and (1.2) we may write the expression for P directly.

P = —/d3x T(x)Vo(x),

dhdp 1 [Ex
- _ 3,2 MV P 2 [Pk i(ptk)x _af _t
B /d Tens 2\ B v (“k a—k) (“p a*P)’

_ /d%d?’p—l 2
) @ems 2\ Ep

-/ (553 3P (e =) (4 —aly).

Using symmetry we may show that a,paT_

p(27r)36(3) (p+k) (ak — aik) (ap — aip>,

p= apaI). With this, our total momentum becomes,

& 1
P= / (277)3 ip (a;f)ap + apal,).

By adding and then subtracting a;f,ap inside the parenthesis, one sees that

p-/ (;353 3P (abp + (ap.)

~ [ o (oo +3 apua).

Unfortunately, we have precisely the same problem that we had with the Hamiltonian: there
is an infinite ‘baseline’ momentum. Of course, our ‘justification’ here will be identical to the one
offered in that case and so

d3p
SP= / E P anap. (1.3)

omep €deL Setfou



PHYSICS 513: QUANTUM FIELD THEORY EXAMINATION 1 3

b) We are to verify that the Dirac charge operator,
Q= [ @ v @),

may be written in terms of ladder operators as
dp
_ sT s st
Q= / (27)3 Z (apTap - bp bp)'
s

Recall that we can expand our Dirac #’s in terms of fermionic ladder operators.

dsp 1 ipX s,.8 S s .
bo(x)" = / (;j’;g \/;Tpeipxg (a;jugf (p) + 0" pup (—p)). (1.5)

Therefore, we can compute () by writing out its terms explicitly.

Q= / @3z 1 (2)u(z),

dBkd 1 ((p—k)x T, T T s, 8 S s
= /d3x(27r;5%e’(p k) Z [(akfubT(k) +b7kvbT(—k)) (apua(p) —l—bjpva(—p))},

T8

- / m%@mw(p 102 [(ak 09 + 07007 (1) (apui(e) + 0 () |
= / (;?;3 2;}) Z [(agu?(p) + blpvy(—p)) (a;uj(p) + bsjpvs(—l)))]a

d 1 , T .
B / ) 35, 2 (aplagu; (p)us(p) + apb e (p) ()
T8
+b7 apvyt(—p)us (p) + 0, b°! vT’T(—p)US(—p))
—“P'P"b a —-P ' —p"b a ’
dp 1 ey . e .
- / P (ap]LapubJr (p)ua(p) + b—Pb—TvaT(ip)va(fp))v

d 1
_ s rt s r st
- / (n)? 255, 21" 2 (“P et b—Pb—P>’

d 75 s
- | B S (s )

We note that by symmetry b ;b”, = bpbi. By using its anticommutation relation to rewrite

b;bfj and then dropping the infinite ‘baseline’ energy as we did in part (a), we see that

Q= / (57?;3 > (apfay — b303). (1.6)

4 % ~
omep €deL der€an
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2. a) We are to show that the matrices
(T )ap =i (5”a5yﬁ - 5#551'@) ;
generate the Lorentz algebra,
[T, TP =i (g"P T — g TV — g" T + ' J"P).

We are reminded that matrix multiplication is given by (AB)ay = AaﬁBﬁW. Recall that in
homework 5.1, we showed that

(j,u.l/)(xﬁ — (gu(xéuﬂ _ gvadﬂﬁ) .
Let us proceed directly to demonstrate the Lorentz algebra.
T4 0] = = (a8 = 838", ) (9707, = 976%) + (874075 = 8%40% ) (6%, —g*75%,)
— 5Ma5Vﬁng5ay 4 5/10‘(;11[590/35% + 5%51/ gpﬁ(;ov _ 5%51/0[9065%

(03

1 2 3 4
+00,0%39"7 8", — 6°,0%59" 7 6%, — 6°56%,9"7 8", + 6750%,9" 5",

5 6 7 8
= —(65",0%597°0% — 050°0g" 6" )" + (8%,8"59708", — 0,8%9" 0" )"
1&8 2&6
+ (5%529/)6507 _ 5%529”55”7)9“/) _ ((wﬁyagoﬁ(;pv — 0P, (5‘7[39“55””9”0,

3&7 4&5
[T, T =i T = g =g T + 4" T) ] (2.1)

¢ % —~
omep €eL der€au

b) Like part (a) above, we are to show that the matrices

77 i L v
St :Z[’ylafy ]7

generate the Lorentz algebra,
(1Y, §P7] = i (g"P ST — ghPSVT — gYT GHP 4 gho GVPY

As Pascal wrote, ‘T apologize for the length of this [proof], for I did not have time to make it
short.” Before we proceed directly, let’s outline the derivation so that the algebra is clear. First,
we will fully expand the commutator of S* with S??. We will have 8 terms. For each of those
terms, we will use the anticommutation identity y#~4* = 2g** — v¥~4* to rewrite the middle of
each term. By repeated use of the anticommutation relations, it can be shown that

VAPA T = AT+ 2(g7 AN = gAY A gAY = g T+ g = YY), (2.2)
This will be used to cancel many terms and multiply the whole expression by 2 before we contract

back to terms involving S#’s. Let us begin.

1
(57,877 = =16 (¥ =7"7",7"77 =7777)),

1 v (o v (on 12 (o v (o
= —E([W”w ] = Y YT = YA P + YA AR

1 v 124 v 124
16 (YA APAT = APATAHNY — AN AP TPty

=V AHAPNT +APYTAA A AENTAE = TP

1 (o8 (on o g
16 (29”’)7“7 = HAPNAT = 27PN T A 4 T AP
— 297K+ APPNTNT A+ 297HY P — A TP
— 2677V + AT AP+ 267 TP A — APy A

+ 2gHPy 7YY — ATyl — 2gHP Y7 + v”va’“r”).
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Now, the rest of the derivation is a consequence of (2.2). Because each y*v”~yPy7 term is
equal to its complete antisymmetrization y7~yP~”~vy* together with six ¢g”?-like terms, all terms
not involving the metric tensor will cancel each other. When we add all of the contributions
from all of the cancellings, sixteen of the added twenty-four terms will cancel each other and
the eight remaining will have the effect of multiplying each of the g”?-like terms by two. So
after this is done in a couple of pages of algebra that I am not courageous enough to type, the

commutator is reduced to

Ao

1
(VP
4(9 (Y

—77")

[ [5", 877 = i (g7 8" — g"P 5”7 — g"7 S + g7 87) ]

=" (VA = APY) + g7 (AP = APM) + g (VT =)

(2.3)

omep €deL Setfou

c) We are to show the explicit formulations of the Lorentz boost matrices A(n) along the 3 direction

in both vector and spinor representations. These are generically given by

Aw) = e B

JHY

)

where J"¥ are the representation matrices of the algebra and w,, parameterize the transforma-

tion group element.

In the vector representation, this matrix is,

cosh(n) 0 0 sinh(n)
0 1 0 0
Aln) = 0O 01 0
sinh(n) 0 0 cosh(n)
In the spinor representation, this matrix is
cosh(n/2) — sinh(n/2) 0 0
_ 0 cosh(n/2) + sinh(n/2) 0
N 0 0 cosh(n/2) + sinh(n/2)
0 0 0
So,
e 00 0
0 e 0 0
A =
(n) 0 0 677/2 0
0 0 0 2

d) No components of the Dirac spinor are invariant under a nontrivial boost.

0
0

cosh(n/2) — sinh(n/2)

(2.5)

e) Like part (c) above, we are to explicitly write out the rotation matrices A(f) corresponding to a

rotation about the z2 axis.

In the vector representation, this matrix is given by

1 0 0 0

0 cosf —sinf O

A(0) = 0 sinf cosf O

0 0 0 1

In the spinor representation, this matrix is given by
e0/2 0 0 0
0 €92 0 0
A(9) = :
( ) 0 O 6—19/2 O
0 0 0 €02

(2.7)

f) The vectors are symmetric under 27 rotations and so are unchanged under a ‘complete’ rotation.
Spinors, however, are symmetric under 47 rotations are therefore only ‘half-way back’ under a

27 rotation.
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Let us define the chiral transformation to be given by ¢ — ei‘x“fsw. How does the conjugate
spinor v transform?
We may begin to compute this transformation directly.
b — P =10
.5
= (7)1,
= wTe*iavs,YO_
When we expand e~ in its Taylor series, we see that because 4° anticommutes with each of

the 7° terms, we may bring the ~° to the left of the exponential with the cost of a change in the
sign of the exponent. Therefore

D — Pt (3.1)
We are to show the transformation properties of the vector V# = ¢y1p.
We can compute this transformation directly. Note that v anticommutes with all .

VI = Gy — el ey,
— . 5 . 5
— gytemien ey,

=yt =V

52

We must show that the Dirac Lagrangian £ = @(i’y“@u — m)% is invariant under chiral trans-
formations in the the massless case but is not so when m # 0.

Note that because the vectors are invariant, d, — 0,. Therefore, we may directly compute
the transformation in each case. Let us say that m = 0.

£ = Gl — £ e e,
= iyt 0T 9,
= i = L.
Therefore the Lagrangian is invariant if m = 0. On the other hand, if m # 0,
L= Gin O — bmap — £ = hin" O — e’ me' "y,
= Gin" 0 — dme* 7§ # L.

It is clear that the Lagrangian is not invariant under the chiral transformation generally.

Therefore,

The most general Noether current is

oL oL
gt = ———d0¢(x) — (5‘V¢ x) — Eé“y) ox”,
50,6 90,07
where d¢ is the total variation of the field and dz” is the coordinate variation. In the chiral
transformation, dx¥ = 0 and ¢ is the Dirac spinor field. So the Noether current in our case is

given by,
oL oL

iF= = 5+ —— 5.
5= 50,0 8@
Now, first we note that
oL . oL
= ¢Yiy" and — =
o0, " 9(0.7)

To compute the conserved current, we must find 6. We know ¢ — 1/ = ei®?" ~ (1 +iay®),
so 09 ~ iy, Therefore, our conserved current is

it = ="y (3.3)

Note that Peskin and Schroeder write the conserved current as j&' = ¢y#41). This is essen-
tially equivalent to the current above and is likewise conserved.
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We are to compute the divergence of the Noether current generally (i.e. when there is a possibly
non-zero mass). We note that the Dirac equation implies that 70,1y = —imi) and 9,9y =
imap. Therefore, we may compute the divergence directly.

Oujt = — (8, 0)V v b — Py ¥ 0,0,
= —(8, )Y + Py YO,
= —imapy° — impy°ep,
5 0ugl = —i2mypyP. (3.4)

Again, this is consistent with the sign convention we derived for j£ but differs from Peskin and
Schroeder.

We are to find unitary operators C and P and an anti-unitary operator 7 that give the standard
transformations of the complex Klein-Gordon field.
Recall that the complex Klein-Gordon field may be written

d3p 1 . _
z) = | —— ——— (ape "P* + bl ¢PX);
¢(@) / (2m)3 2B, (ap p")
d’ 1 , ,
* T ipx —ipxX
) — ale* + bye .
(b ( ) / (27.(.)3 /2Ep ( P p )
We will proceed by ansatz and propose each operator’s transformation on the ladder operators
and then verify the transformation properties of the field itself.

Parity
We must to define an operator P such that P¢(t,x)PT = ¢(t, —x). Let the parity transfor-
mations of the ladder operators to be given by

PapPt =nea_p  and  PbyPT = npb_p.
We claim that the desired transformation will occur (with a condition on 7). Clearly, these
transformations imply that

d 1 , )
Pott. P = [ 0 L (uacpe bt ) ~ oft, —x),

(2m)3 | /2E,
If we want Po(t,x)PT = ¢(t,—x) up to a phase 74, then it is clear that 7, must equal Ny in
general. More so, however, if we want true equality we demand that n, = n; = 1.

Charge Conjugation
We must to define an operator C such that Ceé(t,x)CT = ¢*(¢,x). Let the charge conjugation
transformations of the ladder operators be given by

CapCl = by and ChpCl = ap.
These transformations clearly show that

d 1 , )
Co(t,x)CT = / (23;3 NN (bpe™™* + ale'™) = ¢*(t, x).

Time Reversal
We must to define an operator 7 such that 7¢(t, x)71 = ¢(—t,x). Let the anti-unitary time
reversal transformations of the ladder operators be given by
TapT =a_y and ThpT  =b_p.

Note that when we act with 7 on the field ¢, because it is anti-unitary, we must take the complex
conjugate of each of the exponential terms as we ‘bring 7 in.” This yields the transformation,

d 1
To(t,x)TH = / (23;3 oo

(a_peipx + bT_pefipx) = ¢(—t,x).
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b) We are to check the transformation properties of the current
JH =ilg" (0" ¢) — (0"¢")¢),
under C, P, and 7. Let us do each in turn.
Parity
Note that under parity, 0" — 0,,.
PJHPl = Pil™(9"¢) — (0"6")¢]P",
= i[Po*PIPI¢PT — POr¢*PTPHPT],
= i@ (t, =x)(9uo(t, =x)) = (09" (1, =%)) (L, —x)],
SPIRPT =, (4.1)

Charge Conjugation
cJrct = cilg*(9%9) — (9"¢™)¢lCt,
— i[cg ctcorect —corgrcicect,
= i[p(9"¢") — (9"¢)9"],
’ cjret = — gn. ‘ (4.2)

Time Reversal
Note that under time reversal, 0" — —0,, and that 7 is anti-unitary.

TIMTT = Tilp*(9") — (9" )| T,
= —i[TQ*TTTO'¢TT — TO'p*T T T,
= —i[-T¢* TN O THT") + (0, To*THT ¢TT],
= i[¢" (=1, %) (Oud(—t, %)) = (0™ (1, x))P(—1,x)],
STIRT =, (4.3)




